# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
このチュートリアルでは、微分可能な陰関数レンダリングを使用して、シーンの複数のビューが与えられた場合にニューラルラディアンスフィールドをどのようにフィッティングするかを示します。
具体的には、このチュートリアルでは、以下の方法を説明します。
提示された陰的モデルは、NeRFの簡略化されたバージョンであることに注意してください。
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020.
簡略化には以下が含まれます。
torch
とtorchvision
がインストールされていることを確認してください。pytorch3d
がインストールされていない場合は、次のセルを使用してインストールしてください。
import os
import sys
import torch
need_pytorch3d=False
try:
import pytorch3d
except ModuleNotFoundError:
need_pytorch3d=True
if need_pytorch3d:
if torch.__version__.startswith("2.2.") and sys.platform.startswith("linux"):
# We try to install PyTorch3D via a released wheel.
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
else:
# We try to install PyTorch3D from source.
!pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
# %matplotlib inline
# %matplotlib notebook
import os
import sys
import time
import json
import glob
import torch
import math
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from IPython import display
from tqdm.notebook import tqdm
# Data structures and functions for rendering
from pytorch3d.structures import Volumes
from pytorch3d.transforms import so3_exp_map
from pytorch3d.renderer import (
FoVPerspectiveCameras,
NDCMultinomialRaysampler,
MonteCarloRaysampler,
EmissionAbsorptionRaymarcher,
ImplicitRenderer,
RayBundle,
ray_bundle_to_ray_points,
)
# obtain the utilized device
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.set_device(device)
else:
print(
'Please note that NeRF is a resource-demanding method.'
+ ' Running this notebook on CPU will be extremely slow.'
+ ' We recommend running the example on a GPU'
+ ' with at least 10 GB of memory.'
)
device = torch.device("cpu")
!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/main/docs/tutorials/utils/plot_image_grid.py
!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/main/docs/tutorials/utils/generate_cow_renders.py
from plot_image_grid import image_grid
from generate_cow_renders import generate_cow_renders
または、ローカルで実行する場合は、次のセルのコメントを外して実行してください。
# from utils.generate_cow_renders import generate_cow_renders
# from utils import image_grid
次のセルは、トレーニングデータを作成します。これは、いくつかの視点からfit_textured_mesh.ipynb
チュートリアルのcowメッシュをレンダリングし、以下を返します。
注:このチュートリアルは陰関数レンダリングの詳細を説明することを目的としているため、generate_cow_renders
関数で実装されているメッシュレンダリングの方法は説明しません。メッシュレンダリングの詳細については、fit_textured_mesh.ipynb
を参照してください。
target_cameras, target_images, target_silhouettes = generate_cow_renders(num_views=40, azimuth_range=180)
print(f'Generated {len(target_images)} images/silhouettes/cameras.')
以下は、ターゲット画像の各ピクセルからレイを放出し、レイに沿って一様に間隔を空けた点のセットをサンプリングする陰関数レンダラーを初期化します。各レイポイントでは、対応する密度とカラー値は、シーンのニューラルモデル内の対応する位置を問い合わせることで取得されます(モデルは後のセルで説明およびインスタンス化されます)。
レンダラーは、レイマーチャとレイサンプラーで構成されています。
MonteCarloRaysampler
は、画像平面のピクセルのランダムなサブセットからレイを生成するために使用されます。ピクセルのランダムなサブサンプリングは、**トレーニング**中に実行され、陰的モデルのメモリ消費を削減します。NDCMultinomialRaysampler
は、標準的なPyTorch3D座標グリッド規則に従います(+Xは右から左、+Yは下から上、+Zはユーザーから離れる方向)。シーンの陰的モデルと組み合わせることで、NDCMultinomialRaysampler
は大量のメモリを消費するため、**テスト**時のトレーニング結果の視覚化のみに使用されます。EmissionAbsorptionRaymarcher
を使用します。# render_size describes the size of both sides of the
# rendered images in pixels. Since an advantage of
# Neural Radiance Fields are high quality renders
# with a significant amount of details, we render
# the implicit function at double the size of
# target images.
render_size = target_images.shape[1] * 2
# Our rendered scene is centered around (0,0,0)
# and is enclosed inside a bounding box
# whose side is roughly equal to 3.0 (world units).
volume_extent_world = 3.0
# 1) Instantiate the raysamplers.
# Here, NDCMultinomialRaysampler generates a rectangular image
# grid of rays whose coordinates follow the PyTorch3D
# coordinate conventions.
raysampler_grid = NDCMultinomialRaysampler(
image_height=render_size,
image_width=render_size,
n_pts_per_ray=128,
min_depth=0.1,
max_depth=volume_extent_world,
)
# MonteCarloRaysampler generates a random subset
# of `n_rays_per_image` rays emitted from the image plane.
raysampler_mc = MonteCarloRaysampler(
min_x = -1.0,
max_x = 1.0,
min_y = -1.0,
max_y = 1.0,
n_rays_per_image=750,
n_pts_per_ray=128,
min_depth=0.1,
max_depth=volume_extent_world,
)
# 2) Instantiate the raymarcher.
# Here, we use the standard EmissionAbsorptionRaymarcher
# which marches along each ray in order to render
# the ray into a single 3D color vector
# and an opacity scalar.
raymarcher = EmissionAbsorptionRaymarcher()
# Finally, instantiate the implicit renders
# for both raysamplers.
renderer_grid = ImplicitRenderer(
raysampler=raysampler_grid, raymarcher=raymarcher,
)
renderer_mc = ImplicitRenderer(
raysampler=raysampler_mc, raymarcher=raymarcher,
)
このセルでは、シーンの3D領域全体で色の連続的なフィールドと不透明度を指定するNeuralRadianceField
モジュールを定義します。
NeuralRadianceField
(NeRF)のforward
関数は、レンダリングレイの束をパラメータ化するテンソルのセットを入力として受け取ります。レイの束は、後でシーンの世界座標系内の3Dレイポイントに変換されます。次に、各3Dポイントは、HarmonicEmbedding
レイヤー(次のセルで定義)を使用して調和表現にマッピングされます。調和埋め込みは、NeRFモデルのカラーブランチと不透明度ブランチに入り、それぞれ3Dベクトルと[0-1]の範囲の1Dスカラーで各レイポイントにラベル付けし、それぞれポイントのRGBカラーと不透明度を定義します。
NeRFはメモリフットプリントが大きいため、NeuralRadianceField.forward_batched
メソッドも実装しています。このメソッドは入力レイをバッチに分割し、forループで各バッチごとにforward
関数を個別に実行します。これにより、GPUメモリの不足なく、大量のレイをレンダリングできます。標準的には、forward_batched
は、シーンのフルサイズのレンダリングを作成するために、画像のすべてのピクセルから放出されたレイをレンダリングするために使用されます。
class HarmonicEmbedding(torch.nn.Module):
def __init__(self, n_harmonic_functions=60, omega0=0.1):
"""
Given an input tensor `x` of shape [minibatch, ... , dim],
the harmonic embedding layer converts each feature
in `x` into a series of harmonic features `embedding`
as follows:
embedding[..., i*dim:(i+1)*dim] = [
sin(x[..., i]),
sin(2*x[..., i]),
sin(4*x[..., i]),
...
sin(2**(self.n_harmonic_functions-1) * x[..., i]),
cos(x[..., i]),
cos(2*x[..., i]),
cos(4*x[..., i]),
...
cos(2**(self.n_harmonic_functions-1) * x[..., i])
]
Note that `x` is also premultiplied by `omega0` before
evaluating the harmonic functions.
"""
super().__init__()
self.register_buffer(
'frequencies',
omega0 * (2.0 ** torch.arange(n_harmonic_functions)),
)
def forward(self, x):
"""
Args:
x: tensor of shape [..., dim]
Returns:
embedding: a harmonic embedding of `x`
of shape [..., n_harmonic_functions * dim * 2]
"""
embed = (x[..., None] * self.frequencies).view(*x.shape[:-1], -1)
return torch.cat((embed.sin(), embed.cos()), dim=-1)
class NeuralRadianceField(torch.nn.Module):
def __init__(self, n_harmonic_functions=60, n_hidden_neurons=256):
super().__init__()
"""
Args:
n_harmonic_functions: The number of harmonic functions
used to form the harmonic embedding of each point.
n_hidden_neurons: The number of hidden units in the
fully connected layers of the MLPs of the model.
"""
# The harmonic embedding layer converts input 3D coordinates
# to a representation that is more suitable for
# processing with a deep neural network.
self.harmonic_embedding = HarmonicEmbedding(n_harmonic_functions)
# The dimension of the harmonic embedding.
embedding_dim = n_harmonic_functions * 2 * 3
# self.mlp is a simple 2-layer multi-layer perceptron
# which converts the input per-point harmonic embeddings
# to a latent representation.
# Not that we use Softplus activations instead of ReLU.
self.mlp = torch.nn.Sequential(
torch.nn.Linear(embedding_dim, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
)
# Given features predicted by self.mlp, self.color_layer
# is responsible for predicting a 3-D per-point vector
# that represents the RGB color of the point.
self.color_layer = torch.nn.Sequential(
torch.nn.Linear(n_hidden_neurons + embedding_dim, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, 3),
torch.nn.Sigmoid(),
# To ensure that the colors correctly range between [0-1],
# the layer is terminated with a sigmoid layer.
)
# The density layer converts the features of self.mlp
# to a 1D density value representing the raw opacity
# of each point.
self.density_layer = torch.nn.Sequential(
torch.nn.Linear(n_hidden_neurons, 1),
torch.nn.Softplus(beta=10.0),
# Sofplus activation ensures that the raw opacity
# is a non-negative number.
)
# We set the bias of the density layer to -1.5
# in order to initialize the opacities of the
# ray points to values close to 0.
# This is a crucial detail for ensuring convergence
# of the model.
self.density_layer[0].bias.data[0] = -1.5
def _get_densities(self, features):
"""
This function takes `features` predicted by `self.mlp`
and converts them to `raw_densities` with `self.density_layer`.
`raw_densities` are later mapped to [0-1] range with
1 - inverse exponential of `raw_densities`.
"""
raw_densities = self.density_layer(features)
return 1 - (-raw_densities).exp()
def _get_colors(self, features, rays_directions):
"""
This function takes per-point `features` predicted by `self.mlp`
and evaluates the color model in order to attach to each
point a 3D vector of its RGB color.
In order to represent viewpoint dependent effects,
before evaluating `self.color_layer`, `NeuralRadianceField`
concatenates to the `features` a harmonic embedding
of `ray_directions`, which are per-point directions
of point rays expressed as 3D l2-normalized vectors
in world coordinates.
"""
spatial_size = features.shape[:-1]
# Normalize the ray_directions to unit l2 norm.
rays_directions_normed = torch.nn.functional.normalize(
rays_directions, dim=-1
)
# Obtain the harmonic embedding of the normalized ray directions.
rays_embedding = self.harmonic_embedding(
rays_directions_normed
)
# Expand the ray directions tensor so that its spatial size
# is equal to the size of features.
rays_embedding_expand = rays_embedding[..., None, :].expand(
*spatial_size, rays_embedding.shape[-1]
)
# Concatenate ray direction embeddings with
# features and evaluate the color model.
color_layer_input = torch.cat(
(features, rays_embedding_expand),
dim=-1
)
return self.color_layer(color_layer_input)
def forward(
self,
ray_bundle: RayBundle,
**kwargs,
):
"""
The forward function accepts the parametrizations of
3D points sampled along projection rays. The forward
pass is responsible for attaching a 3D vector
and a 1D scalar representing the point's
RGB color and opacity respectively.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
origins of the sampling rays in world coords.
directions: A tensor of shape `(minibatch, ..., 3)`
containing the direction vectors of sampling rays in world coords.
lengths: A tensor of shape `(minibatch, ..., num_points_per_ray)`
containing the lengths at which the rays are sampled.
Returns:
rays_densities: A tensor of shape `(minibatch, ..., num_points_per_ray, 1)`
denoting the opacity of each ray point.
rays_colors: A tensor of shape `(minibatch, ..., num_points_per_ray, 3)`
denoting the color of each ray point.
"""
# We first convert the ray parametrizations to world
# coordinates with `ray_bundle_to_ray_points`.
rays_points_world = ray_bundle_to_ray_points(ray_bundle)
# rays_points_world.shape = [minibatch x ... x 3]
# For each 3D world coordinate, we obtain its harmonic embedding.
embeds = self.harmonic_embedding(
rays_points_world
)
# embeds.shape = [minibatch x ... x self.n_harmonic_functions*6]
# self.mlp maps each harmonic embedding to a latent feature space.
features = self.mlp(embeds)
# features.shape = [minibatch x ... x n_hidden_neurons]
# Finally, given the per-point features,
# execute the density and color branches.
rays_densities = self._get_densities(features)
# rays_densities.shape = [minibatch x ... x 1]
rays_colors = self._get_colors(features, ray_bundle.directions)
# rays_colors.shape = [minibatch x ... x 3]
return rays_densities, rays_colors
def batched_forward(
self,
ray_bundle: RayBundle,
n_batches: int = 16,
**kwargs,
):
"""
This function is used to allow for memory efficient processing
of input rays. The input rays are first split to `n_batches`
chunks and passed through the `self.forward` function one at a time
in a for loop. Combined with disabling PyTorch gradient caching
(`torch.no_grad()`), this allows for rendering large batches
of rays that do not all fit into GPU memory in a single forward pass.
In our case, batched_forward is used to export a fully-sized render
of the radiance field for visualization purposes.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
origins of the sampling rays in world coords.
directions: A tensor of shape `(minibatch, ..., 3)`
containing the direction vectors of sampling rays in world coords.
lengths: A tensor of shape `(minibatch, ..., num_points_per_ray)`
containing the lengths at which the rays are sampled.
n_batches: Specifies the number of batches the input rays are split into.
The larger the number of batches, the smaller the memory footprint
and the lower the processing speed.
Returns:
rays_densities: A tensor of shape `(minibatch, ..., num_points_per_ray, 1)`
denoting the opacity of each ray point.
rays_colors: A tensor of shape `(minibatch, ..., num_points_per_ray, 3)`
denoting the color of each ray point.
"""
# Parse out shapes needed for tensor reshaping in this function.
n_pts_per_ray = ray_bundle.lengths.shape[-1]
spatial_size = [*ray_bundle.origins.shape[:-1], n_pts_per_ray]
# Split the rays to `n_batches` batches.
tot_samples = ray_bundle.origins.shape[:-1].numel()
batches = torch.chunk(torch.arange(tot_samples), n_batches)
# For each batch, execute the standard forward pass.
batch_outputs = [
self.forward(
RayBundle(
origins=ray_bundle.origins.view(-1, 3)[batch_idx],
directions=ray_bundle.directions.view(-1, 3)[batch_idx],
lengths=ray_bundle.lengths.view(-1, n_pts_per_ray)[batch_idx],
xys=None,
)
) for batch_idx in batches
]
# Concatenate the per-batch rays_densities and rays_colors
# and reshape according to the sizes of the inputs.
rays_densities, rays_colors = [
torch.cat(
[batch_output[output_i] for batch_output in batch_outputs], dim=0
).view(*spatial_size, -1) for output_i in (0, 1)
]
return rays_densities, rays_colors
この関数では、ニューラルラディアンスフィールドの最適化に役立つ関数を定義します。
def huber(x, y, scaling=0.1):
"""
A helper function for evaluating the smooth L1 (huber) loss
between the rendered silhouettes and colors.
"""
diff_sq = (x - y) ** 2
loss = ((1 + diff_sq / (scaling**2)).clamp(1e-4).sqrt() - 1) * float(scaling)
return loss
def sample_images_at_mc_locs(target_images, sampled_rays_xy):
"""
Given a set of Monte Carlo pixel locations `sampled_rays_xy`,
this method samples the tensor `target_images` at the
respective 2D locations.
This function is used in order to extract the colors from
ground truth images that correspond to the colors
rendered using `MonteCarloRaysampler`.
"""
ba = target_images.shape[0]
dim = target_images.shape[-1]
spatial_size = sampled_rays_xy.shape[1:-1]
# In order to sample target_images, we utilize
# the grid_sample function which implements a
# bilinear image sampler.
# Note that we have to invert the sign of the
# sampled ray positions to convert the NDC xy locations
# of the MonteCarloRaysampler to the coordinate
# convention of grid_sample.
images_sampled = torch.nn.functional.grid_sample(
target_images.permute(0, 3, 1, 2),
-sampled_rays_xy.view(ba, -1, 1, 2), # note the sign inversion
align_corners=True
)
return images_sampled.permute(0, 2, 3, 1).view(
ba, *spatial_size, dim
)
def show_full_render(
neural_radiance_field, camera,
target_image, target_silhouette,
loss_history_color, loss_history_sil,
):
"""
This is a helper function for visualizing the
intermediate results of the learning.
Since the `NeuralRadianceField` suffers from
a large memory footprint, which does not let us
render the full image grid in a single forward pass,
we utilize the `NeuralRadianceField.batched_forward`
function in combination with disabling the gradient caching.
This chunks the set of emitted rays to batches and
evaluates the implicit function on one batch at a time
to prevent GPU memory overflow.
"""
# Prevent gradient caching.
with torch.no_grad():
# Render using the grid renderer and the
# batched_forward function of neural_radiance_field.
rendered_image_silhouette, _ = renderer_grid(
cameras=camera,
volumetric_function=neural_radiance_field.batched_forward
)
# Split the rendering result to a silhouette render
# and the image render.
rendered_image, rendered_silhouette = (
rendered_image_silhouette[0].split([3, 1], dim=-1)
)
# Generate plots.
fig, ax = plt.subplots(2, 3, figsize=(15, 10))
ax = ax.ravel()
clamp_and_detach = lambda x: x.clamp(0.0, 1.0).cpu().detach().numpy()
ax[0].plot(list(range(len(loss_history_color))), loss_history_color, linewidth=1)
ax[1].imshow(clamp_and_detach(rendered_image))
ax[2].imshow(clamp_and_detach(rendered_silhouette[..., 0]))
ax[3].plot(list(range(len(loss_history_sil))), loss_history_sil, linewidth=1)
ax[4].imshow(clamp_and_detach(target_image))
ax[5].imshow(clamp_and_detach(target_silhouette))
for ax_, title_ in zip(
ax,
(
"loss color", "rendered image", "rendered silhouette",
"loss silhouette", "target image", "target silhouette",
)
):
if not title_.startswith('loss'):
ax_.grid("off")
ax_.axis("off")
ax_.set_title(title_)
fig.canvas.draw(); fig.show()
display.clear_output(wait=True)
display.display(fig)
return fig
ここでは、微分可能なレンダリングを使用してラディアンスフィールドのフィッティングを行います。
ラディアンスフィールドをフィッティングするために、target_cameras
の視点からレンダリングし、結果のレンダリングを観測されたtarget_images
とtarget_silhouettes
と比較します。
比較は、対応するtarget_images
/rendered_images
のペアとtarget_silhouettes
/rendered_silhouettes
のペア間の平均フーバー(スムーズL1)誤差を評価することによって行われます。
MonteCarloRaysampler
を使用しているため、トレーニングレンダラーrenderer_mc
の出力は、画像平面からランダムにサンプリングされたピクセルの色であり、有効な画像を形成するピクセルの格子ではありません。したがって、レンダリングされた色を真値と比較するために、ランダムなモンテカルロピクセル位置を使用して、レンダリング位置に対応するxy位置で真値の画像/シルエットtarget_silhouettes
/rendered_silhouettes
をサンプリングします。これは、前のセルで説明されているヘルパー関数sample_images_at_mc_locs
を使用して行われます。
# First move all relevant variables to the correct device.
renderer_grid = renderer_grid.to(device)
renderer_mc = renderer_mc.to(device)
target_cameras = target_cameras.to(device)
target_images = target_images.to(device)
target_silhouettes = target_silhouettes.to(device)
# Set the seed for reproducibility
torch.manual_seed(1)
# Instantiate the radiance field model.
neural_radiance_field = NeuralRadianceField().to(device)
# Instantiate the Adam optimizer. We set its master learning rate to 1e-3.
lr = 1e-3
optimizer = torch.optim.Adam(neural_radiance_field.parameters(), lr=lr)
# We sample 6 random cameras in a minibatch. Each camera
# emits raysampler_mc.n_pts_per_image rays.
batch_size = 6
# 3000 iterations take ~20 min on a Tesla M40 and lead to
# reasonably sharp results. However, for the best possible
# results, we recommend setting n_iter=20000.
n_iter = 3000
# Init the loss history buffers.
loss_history_color, loss_history_sil = [], []
# The main optimization loop.
for iteration in range(n_iter):
# In case we reached the last 75% of iterations,
# decrease the learning rate of the optimizer 10-fold.
if iteration == round(n_iter * 0.75):
print('Decreasing LR 10-fold ...')
optimizer = torch.optim.Adam(
neural_radiance_field.parameters(), lr=lr * 0.1
)
# Zero the optimizer gradient.
optimizer.zero_grad()
# Sample random batch indices.
batch_idx = torch.randperm(len(target_cameras))[:batch_size]
# Sample the minibatch of cameras.
batch_cameras = FoVPerspectiveCameras(
R = target_cameras.R[batch_idx],
T = target_cameras.T[batch_idx],
znear = target_cameras.znear[batch_idx],
zfar = target_cameras.zfar[batch_idx],
aspect_ratio = target_cameras.aspect_ratio[batch_idx],
fov = target_cameras.fov[batch_idx],
device = device,
)
# Evaluate the nerf model.
rendered_images_silhouettes, sampled_rays = renderer_mc(
cameras=batch_cameras,
volumetric_function=neural_radiance_field
)
rendered_images, rendered_silhouettes = (
rendered_images_silhouettes.split([3, 1], dim=-1)
)
# Compute the silhouette error as the mean huber
# loss between the predicted masks and the
# sampled target silhouettes.
silhouettes_at_rays = sample_images_at_mc_locs(
target_silhouettes[batch_idx, ..., None],
sampled_rays.xys
)
sil_err = huber(
rendered_silhouettes,
silhouettes_at_rays,
).abs().mean()
# Compute the color error as the mean huber
# loss between the rendered colors and the
# sampled target images.
colors_at_rays = sample_images_at_mc_locs(
target_images[batch_idx],
sampled_rays.xys
)
color_err = huber(
rendered_images,
colors_at_rays,
).abs().mean()
# The optimization loss is a simple
# sum of the color and silhouette errors.
loss = color_err + sil_err
# Log the loss history.
loss_history_color.append(float(color_err))
loss_history_sil.append(float(sil_err))
# Every 10 iterations, print the current values of the losses.
if iteration % 10 == 0:
print(
f'Iteration {iteration:05d}:'
+ f' loss color = {float(color_err):1.2e}'
+ f' loss silhouette = {float(sil_err):1.2e}'
)
# Take the optimization step.
loss.backward()
optimizer.step()
# Visualize the full renders every 100 iterations.
if iteration % 100 == 0:
show_idx = torch.randperm(len(target_cameras))[:1]
show_full_render(
neural_radiance_field,
FoVPerspectiveCameras(
R = target_cameras.R[show_idx],
T = target_cameras.T[show_idx],
znear = target_cameras.znear[show_idx],
zfar = target_cameras.zfar[show_idx],
aspect_ratio = target_cameras.aspect_ratio[show_idx],
fov = target_cameras.fov[show_idx],
device = device,
),
target_images[show_idx][0],
target_silhouettes[show_idx][0],
loss_history_color,
loss_history_sil,
)
最後に、ボリュームのy軸を中心に回転する複数の視点からレンダリングすることによって、ニューラルラディアンスフィールドを視覚化します。
def generate_rotating_nerf(neural_radiance_field, n_frames = 50):
logRs = torch.zeros(n_frames, 3, device=device)
logRs[:, 1] = torch.linspace(-3.14, 3.14, n_frames, device=device)
Rs = so3_exp_map(logRs)
Ts = torch.zeros(n_frames, 3, device=device)
Ts[:, 2] = 2.7
frames = []
print('Rendering rotating NeRF ...')
for R, T in zip(tqdm(Rs), Ts):
camera = FoVPerspectiveCameras(
R=R[None],
T=T[None],
znear=target_cameras.znear[0],
zfar=target_cameras.zfar[0],
aspect_ratio=target_cameras.aspect_ratio[0],
fov=target_cameras.fov[0],
device=device,
)
# Note that we again render with `NDCMultinomialRaysampler`
# and the batched_forward function of neural_radiance_field.
frames.append(
renderer_grid(
cameras=camera,
volumetric_function=neural_radiance_field.batched_forward,
)[0][..., :3]
)
return torch.cat(frames)
with torch.no_grad():
rotating_nerf_frames = generate_rotating_nerf(neural_radiance_field, n_frames=3*5)
image_grid(rotating_nerf_frames.clamp(0., 1.).cpu().numpy(), rows=3, cols=5, rgb=True, fill=True)
plt.show()
このチュートリアルでは、既知の視点からのシーンのレンダリングが各視点の観測された画像と一致するように、シーンの陰的表現を最適化する方法を示しました。レンダリングは、MonteCarloRaysampler
またはNDCMultinomialRaysampler
とEmissionAbsorptionRaymarcher
で構成されるPyTorch3Dの陰関数レンダラーを使用して実行されました。